LECTURES

OR OF SPRING

Explaining the Power of Springing Bodies:
To which are added fome

COLEECTIONS
 Viz.

A.Defription of Dr.Pappins Wind-Fountain and Force-Pump 4 p. Mr.Young's Obfervation concerning natuval Fountains.
Some other Confiderations concerning that Subjelt.
Captain Sturmy's remarks of a Subberraneowa Cave and Cijtern. Mr. G. T. Obfervations made on the Pike of Teneriff, $1674 \cdot$
Some Reffections and Conjectinres occafioned thereupon.
A Relation of a late Eruption in the Ife of Palma.

By ROB ERT HOOKE.S.R.S.

LONDON,

Printed for \mathcal{F} ohn Martyn Printer to the Rayal Society; at the Bell in St. Pauls Church-Yard, 1678.

[I]
 Potentia Reffitutiva,
 OR

 3
SPRING.

 He Theory of Springs, though attempted by divers eminent Mathematicians of this Age has hitherto not been Publifhed by any, It it now/about eighteen years fince I firft found it out, but defigning to apply it to fome particular ufe, I omitted the publifhing thereof,

About threeyears fince His Majefty was pleafed to fee the Experiment that made out this Theory tried at Whise-Hall, as alfo my Spring Watch.

About two years fince I printed this Theory in an Anagram at the end of my Book of the Deferiptions of Heliofcopes, viz.ce ii i in o s sis ti n u, ideft, Ut tenfio fic vic; That is, The Power of any Spring is in the fame proportion with the Tenfion thereof: That is, if one power ftretch or bend it one fpace, two will bend it two, and three will bend it three, and fo forward. Now as the Theory is very fhort, fo the way of trying it is very eafie.

Take then a quantity of even-drawn Wire, either Steel, Iron, or Brafs, and coyl it on an sven Cylinder intoa Helix of what length or number of turns you pleafe, then curn the ends of the Wire into Loops, by one of which furpend this coyl upon a nail, and by the other fuftain the weight that you would have to extend it, and hanging on feveral Weights obferve exactly to what length each of the weights do extend it beyond the length that its own weight doth ftretch it to, and you fhall find that if

[5]

one ounce, or one pound, of one certain weight doth lengtian it ofle ligh, or onf inch or one certain lengh, thely two ounces, two pouthe, or two weights will extend it two lines, two inches, or two lengths; and three punces, pounds, or weights, three lines, inches, or tengths 3 and fo forwards. And this is the Rule or Law of Nature, upon which all tmanner of Refftuetr or Sprifiging motion deth proeeed, whether it be of Rarefection, or Girtenfion, or Condenfation and Complofition.
EDDrimkea Wateh Spuing, and coyl it into a Sbiral, Gaas nio part theruofmay touch another, then previdea very light wheel of Braff, or the the, wnd ex itcin an arbor that hath kwo fmall Pivers of Steel, upon which Fivot urn the edge of the faid Wheel very even and fmooth, to that a fmall filk mady be ecoyledupenit; then puc this Wheelimsoia Frame, fo fhat-the whiel may movevery freely on its Bitots; faften the central end of the ainorefaid Spring clofe to theipiver hole or feenter of the frame in whids the Lirber of she Whetldouhimove, and the ocheriend Thicon to dhe Rim of the Whect, thoucopling alfine thander thread of the upion the ettige iof the Wheol thang a forall ight feakcarthe enid therdeffited receine The weight thaefhallble put thercintog, then fuffering: the whedtoffand in itsown pofitionby alitite inder finted uto the frathe, ma pointing oal the Rias of the Wheel, make a mark with Ink, ortherike, on that pars of Uhe'Rim that the Indexipointeth atg ethen put in a drachen weight into the feale, and fuffer the * Whedto fatole, and make another mark on the Rim antierethe Index dethipoint; thomaddia drachmímore, and het the Wheel fextie ?again, iand note with Inkons weforef the piace sof the Rim pointed atby the inIdexegt thien zdda whind atrachim, modo as beforejand
 theg thetWheds to fenle, apal maiting the fareral
 Tho

[3]

 together yop fhilt find ohier they will all be equal che crict thieothory fo that if a drachim doth move the-Wheel ten, degrees, twa drachins will move it twenty, and three thirty, and fouv forty, and five fifty, and fo forwasds:
Or athe a Wire ftring iof twenty, or thirty, or forty faot longy andriften the upper part thereof to a mil, and to the other ond faftena Scale to recefve the weights; Then with a pairof Compafles talie thic diftance of the bottom of the faleuffon the ground or floor underneath, and fet down the fald diftance, then put in weights into the flid feate in the faime manioras in the formieytuials, and meafure the feveral freetehings of the faid fring, and fet them down. Then compare the feveral fretchings of the farid fring, and you will find that they will always beat the fame proportions one to the other that the weightits do that made them.

The fame will be found, if trial be made, witha piece of dry wood that will bend and return, if ohe ond thereof be fixa in a horizontal pofture, and to the other end be hanged weights to make it bend downwards.
The manner of trying the fame thing upon a body of Air, whether it be for the rarefaction or for the compreffion thereof I did about fourteen years fince publifh in my Miorographia, and therefore I fhall not need to add any further deleription thereof.

Each of thefe ways will be mote plainly underflood by the explanations of the annexed figures.

- The firft whereof doth reprefent by A B thie coyl or helix of Wire, Cthe end of it, by which $i t^{2}$ is fufpended, D the other end thereof, by which a fmall Scale E is hanged, into which putting Weights as FCHIK LM N, fingly and feparately they being in proportion to one another as i 2345678 , the Spring will be thereby equally fretelet to $o, p, y, r^{2}, 5,5,5 m p$,

[4]

that is, if F fretchit fo as the bottoin of the Scale defcend to θ, then G will make it defeend to p_{y} H to q_{0} Ito r, K to s, L to $n_{3} M$ to n, and N to $w, \& c$, So that $x o$ fhall be one frace, $x p, 2, \times q, 3, x r, 4$, $\mathrm{x}\left\{, 5, \mathrm{x} t, 6, \times \mu_{2}, 7, \times \mathrm{m}_{9} 8\right.$.

The fecond figure reprefents a Watch Spring coyled in a Spiral by C A B B B D, whofe end Cis fixed to a pin or Axis immovable, into the end of which the Axis of a fmall light Wheel is inferted, upon which it moves; the end D is fixed to a pin in the Rim of the Wheel yy y y, upon which is coyled a fmall filk, to the end of which is fixed a Scale to eceive the weights. To the frame in which theforare contained is fixed the hand or Index z; then trying with the former weights put into the Scale E, you will find that if F put into the Scale E finks the bottom of it x to $O_{\text {s }}$ then G will fink it to p, and H to q; Ito, r, K to s, L to t, and z will point at $i, 2,3,4,5,6,7,8$ on the Wheel.

The trialswith a ftraight wire, or a ftraight piece of wood laid Horizontal are fo plain they need not an explication by figure, and the way of trying upon Air I have long fince explained in my Micographia by figures.

From all which it is very evident that the Rule or Law of Nature in every fringing body is, that the force or power thereof to reftore it felf to its natural pofition is always proportionate to the Diffance or fpace it is removed therefrom, whether it be by rarefaction, or feparation of its parts the one from the other, or by a Condenfation, or crowding of thofe parts nearer together. Nor is it obfervable in thefe bodys only, but in all other fpringy bodies whatfoever, whether Metal, Wood, Stones, baked Earths; Hair, Horns, Silk, Bones, Sinews, Glafs, and the like. Refpect being had to the particular figures of the hodics: bended, and the advantagious or difadvantogious, ways, of bending them.

From

[5]

From this Principle it will be eafie to calculate the feveral fttength of Bows, as of Long Bows or: Crofs-Bows, whether they be made of Wood, Steel, Horns, Sinews, or the like. As allo of the Balifte or Catapulte ufed by the Ancients, which being once found, and Tables thereof calculated, I fhall anon Chew a way how to calculate the power they have in fhooting or cafting of Arrows, Bullets, Stones, Granadoes, or the like.
From thefe Principles alfo it will be eafie to calculate the proportionate ftrength of the fpring of Watch: uppn the Fufey thereof, and confequently of adjunt ing the Fuley to the Spring fo as to make it draw or move the Watch always with an equal force.

From the fa me alfo it will be eafie to give the reafon of the Ifochrone motion of a Spring or extended ftring, and of the uniform found produced by thofe whofe Vibrations are quick enough to produce an audible found, as likewife the reafon of the founds; and their variations in all manner of fonorous or fpringing Bodies; of which more on another occafion.

From this appears the reafon, as I fhall thetw by and by, why a Spring applied to the balance of a Watch doth make the Vibrations thereof equal, whether they be greater or fmaller, one of which kind I fhewed to the right Honourable the Lord Vifcount, Brounker, the Honourable Robert Boyle Efq; and Sir Robert Morey in the year 1660, in order to have gotten Letters Patents for the ufe and benefit thereof.

From this it will be eafie to make a Philofophical Seale to examine the weight of any body without putting in weights, which was that which I menti-f oned at the end of my defcription of Heliofcopes, the ground of which was veiled under this Anagram, c ediinnoopssttu u, namely, Ut pondus fictenfio. The fabrick of which fee in the three firft figures.

This Scale I contrived in order to examine the gran vitation of bodies towards the Center of the Earth,

$$
\text { B } 3 \quad \text { vizo }
$$

[6]

uth to examine whether bodies at a further diftance from the Centet of the Earth did not lofe fomewhat of their power or tendency towards it. And propounded it as one of the Experiments to be tried at the top of the Pike of Teneriff, and attempted the fame at the top of the Tower of St. Pauls before the burning of it in the late great Fire; as allo at the top and bottom of the Abby of St. Peters in Wefininfer though thefe being by but frall diftances removed from the Surface, I was not able certainly to perceive atry maniferb difference. I propounded the famealifo to be tried at the bottom and feveral fations of deep Mines $;$ and D. Poner did make fome trials to that end, but his Inftruments not being good, nothing could be certainly concluded from them.

Thefe are the Phenomena of Springs and fpringy bodies; whichas they have not hitherto been by any that I know teduced to Rules, fo have all the attempts for the explications of the reafon of their power, and of fpringinefs in general, been very infufficient.
In the year 1660. I printed a little Tract, which I called, An Attempt for the explication of the Phenomena, © ε_{6} of the rifing of water in the pores of very fmall Pipes, Filtres, ©oc. And being unwilling then to publifh this Theory, as fuppofing it might be prejudicial to my defign of Watchees, which I was then procuring a Patent for, I only hinted the principle which Ifuppofed to be the caufe of thefe Phrnomena of frings in the 31 page thereof in the Englifh Edition, and in the 3^{8} page of the Latine Edition, tranflated by M. Behem, and printed at Amferdam, 1662. But referred the further explication thereof till fome other opportunity.
The Principles I then mentioned I called by the names of Comgruity and Incengruity of bodies. And promifed a further explanation of what I thereby meant on fome other occafion. I fhall here only explainfo much of it as concerns the explication of this prefent Phanomenon.

By

[.7]

By Congrivity and Incongruity then I underftand no. thing elfe but an agreement or difagreement of Bodys as to their Magnitudes and motions.

Thofe Bodies then I fuppofe congruous whofe particles have the fame Magnitude, and the fame degree of Velocity, or elfe an harmonical proportion of Magnitude, and harmonical degree of Velocity. And thofe I fuppofe incongruous which have neither the fame Magnitude, nor the fame degree of Velocity, thor an harmonical proportion of Magnitude nor of Velocity.

I fuppole then the Cenfible Univerfe to confift of body and motion.

By Body I mean fomewhat receptive and communicative of motion or progreffion. Nor can I have any other Idea thereof, for neither Extention nor Quantity, hardnefs nor foftnefs, fluidity nor 'fixednefs, Rarefaction nor Denfation are the proprieties of Body, but of Motion or fomewhat moved.

By Motion I underfand nothing but a power or tendency progrefive of Body according to feveral degrees of Velocity.

Thefe two do always counterballance each other in all the effects, appearances, and operations of Na ture, and therefore it is not impofible but that they may be one and the fame; for a little body with great motion is equivalent to a great body with littlemation as to all its fenfible effects in Nature.

I do further fuppofe then that all things in the Univerfé that become the objects of our fenfes are compounded of thefe two (which we will for the prefent fuppofe diftinct effences, though pofibly they may be found hereafter to be only differing conceptions of oneand the fame effence) namely, Body; and Motion. And that there is no one fenfible Particle of matter but owes the greateft part of its fenfible Extemfion to Motion whatever part thereof it ows to Body accord, ing to the common notion thereof: Which is, that Body

Body is fomewhat that doth perfectly fill a determinate quantity of fpace or extenfion fo as neceflarily to exclude all óther bodies from being comprehended withinthe fame Dimenfions.

I do therefore define a fenfible Body to be a determinate Space or Extenfion defended from being penetrated by another, by a power from within.

To make this the more intelligible, Imagine a very thin plate of Iron, or the like, a foot fquare, to be moved with a Vibrative motion forwards and backwards the flat ways the length of a foot with fo fwift a motion as not to permit any other body to enter into that face within which it Vibrates, this will compofe fuch an effence as I call in my fenfe a Cubick foot of fenfible Body, which differs from the common notion of Body as this (pace of a Cubick foot thus defended by this Vibrating plate doth from a Cubick foot of Iron, or the like, throughout folid. The Particles therefore that compofe all bodies I do fuppofe to owe the greateft part of their fenfible or potential Extenfion to a Vibrative motion.

This Vibrative motion I do not fuppofe inherent or infeparable from the Particles of body, but communicated by Impulfes given from other bodies in the Uníverfe. This only I fuppofe, that the Magnitude or bulk of the body doth make it receptive of this orthat peculiar motion that is communicated, and not of any other. That is, every Particle of matter according to its determinate or prefent Magnitude is receptive of this or that peculiar motion and no other, fo that Magnitude and receptivity of motion feems the fame thing: To explain this by a fimilitude or example. Suppofea number of mufical frings,as A B C DE, $O c$. tuned to certain tones, and a like number of other frings, as $a, b, c, d, e, \& c$. tuned to the fame founds refpectively, A fhall be receptive of the motion of a, but not of that of b, c, nor d; in like manner B fhall be receptive of the motion of b, but not of the motion

[9]

of a, c or d. And fo of the reft. This is that which I callCongruity and Incongruity.

Now as we find that mufical ftrings will be moved by Unifons and Eighths, and other harmonious chords, though not in the fame degree; fo do I fuppofe that the particles of matter will be moved principally by fuch motions as are Unifons, as I may call them, or of equal Velocity with their motions, and by other harmonious motions in a lefs degree.
I do further fuppofe, A fubtil matter that incompaffeth and pervades all other bodies, which is the Menftruum in which they fwim which maintains and continues all fuch bodies in their motion, and which is the medium that conveys all Homogenious or Harmonical motions from body to body.

Further I fuppofe, that all fuch particles of matter as are of a like nature, when not feparated by others of a differing nature will remain together, and ftrengthen the common Vibration of them all againft the differing Vibrations of the ambient bodies.

According to this Notion I fuppofe the whole Univerfe and all the particles thereof to be in a continued motion, and every one to take its fhare of fpace or room in the fame, according to the bulk of its body, or according to the particular power it hath to receive, and continue this or that peculiar motion.

- Two or more of thefe particles joyned immediately together, and coalefcing into one become of another nature, and receptive of another degree of motion and Vibration, and make a compounded particle differing in nature from each of the other particles.

All bulky and fenfible bodies whatfoever I fuppofe to be made up or compofed of fuch particles which have their peculiar and appropriate motions which are kept together by the differing or diffonant Vibrations of the ambient bodies or fluid.

[10]

Akconding tor the differense of thefe Vibrative motions of the Incompaffing bulks. All bodies are more or lefs powefful in preferving their peculiar fhapes:

All bodies neer the Earth áre incompaffed with a) fluid fubtil matter by the differing Velocity of whofe parts all folid bodies are kept together in the peculiar fhapes, they were left in when they were laft fluid. And all fluid bodies, whatfoever are mixed with this fluid, and which is not extruded from them till they beoome folids

Huid bulks differ from folids only in this, that all fluids confift of two forts of particles, the one this common Menfruum near the Earth, which is interfperfed between the Vibrating particles appropriated to that bulk and fo participating of the motions and Vibrations thereof: And the ather, by excluding wholly, or not participating of thatmotion.

Though the particles of folid bodies do by their Vibrative motions exclude this fluid from coming between them where their motions do immodiately toueh; yet are there certain fpaces between them which are not defended by the motion of the partioles from being perwaded by the Heterogeneous flyid menftruum.

Thefe faces fo undefended by the bodies and Vibrative motion of the particles, and confequently pervaded by the fubtil incompaffing Heterogeneous fuid are thofe we call the infenfible pores of bodies.

According to the bignefs of the bodies the motions are but in reciprocal proportion: That is, the bigger or more powerful the body is, the flower is itisi miotion with whichit compounds the particles; and the lefs the body is, the fwifter isitsmotion.

The fmaller the partictes of badies are, the neaver: dotheyiapproach to the nasure of the general fluid,
and themore eafily do they mix and participate of its motion.
The Particles of all folid bodies do immediately touch each other; that is, the Vibrative motions of the bodies do every one touch each other at every Vibration. For explication, Let ABC reprefent three bodies, each of thefe bodies I fuppofe to have a Vibrative motion oneither fide of it, A^{\prime} be-
 tween D and E, B between E and F, and C between F and \mathbf{G}. I fuppofe then that B in every one of its Vibrations doth meet A at E, and C at F, and fo the motionsare continually interchanged: That is, B communicates its motion to A at E,and A at the fame time and place communicates its motion to B , which returning to F meets there with C, and communicates its received motion to C, which at the fame inftant and place communicates its own motion to B, which returns it back to E: So that the Velocity of thefe bodies is always the fame, and each body impreffeth on the contiguous bodies fuch a determinate number of pulfes within a certain fpace of time. Suppofe for inftance, in every fecond of time B communicates to A and to C one million of pulfes, and hath received as many from each of them, by which means each of them doth preferve its own fpace of Vibration, akcording to the power of its Vibration, that neither of the contiguous bodies can enter into it. The extreme particles A and C are repercuffed by the motion of the ambient Heterogeneous fluid, whereof though the bodies are of differing magnitudes, yet the body and motion of the one are equivalent to the body and motion of the other, fo that whatever the body be lefs, the motion is quicker; and where the body is bigger, the motion is lefs. But the Particles of fluid C 2 bodies

[12]

bodies do , npt mmediately touch each othet, bur permit the mixture of the other Heterogenequs fluid near the Earth, which ferves to communicate the motion from particle to particle without the immediate contact of the Vibrations of the Particles.

All folid Bodies retain their folidity till by other extraordinary motions their natural or proper motions become intermixed with other differing motions, and fo they become a bulk of compounded motions, which weaken each others Vibrative motions. So that though the fimilar parts do participate of each others motions, whereby they indeavour to joyn or keep together, yet dothey alfo participate of an Heterogeneous motion, which endeavours to feparate or keep them afunder. And according to the prevalency of the one or the other is the body more or lefs fluid or folid.

All bodies whatfoever would be fluid were it not for the external Heterogeneous mation of the Ambient.

And all fluid bodies whatfoever would be unbounded, and have their parts fly from each other were it not for fome prevailing Heterogeneous motion from without them that drives them more powerfully together.

Heterogeneous motions from without are propar gated within the folid in a direct line if they hit perpendicular to the fuperficies or bounds, but if obliquely in ways not direct, but different and deflected, according to the particular inclination of the body Atriking, and according to the proportion of the Particles ftriking and being ftruck.

All fpringy bodies whatfoever confift of parts thus qualified, that is, of fmall bodies indued with appropriate and peculiar motions, whence every one of thefe particles hath a particular Bulk, Extenfion, or Sphere of activity which it defends from the ingrefs of any other iacompaffing Heterogeneous body whilf

[13]

in its natural eftateand balance in theUniverfe:Which particles being all of the fame nature, that is, of equal bodies, and equal motions, they readily coalefce and joyn together, and make up one folid body, not perfectly every where contiguous, and wholly excluding the above mentioned ambient fluid, but permitting it in many places to pervade the fame in a regular order, yet not fo much but that they do wholly exclude the fame from paffing between all the fides of the compounding particles.

The parts of all fpringy bodies would recede and fly from each other were they not kept together by the Heterogeneous compreffing motions of the ambient whether fluid or folid.

Thefe principles thus hinted, I fhall in the next place come to the particular explication of the manner how they ferve to explain the Phxnomena of fpringing bodies whether folid or fluid.

Firft for folid bodies, as Steel, Glafs, Wood, © ε. which have a Spring both inwards and outwards, according as they are either compreffed or dilated beyond their natural flate.

Let A b reprefent a line of fach a body compounded of eight Vibrating particles, as $\mathbf{I}, 2,3,4,5,6,7,8$, and fuppofe each of thofe Particles to perform a million of fingle Vibrations, and confequently of occurfions with each other in a fecond minute of time,

$$
\text { C } 3 \text {, their }
$$

[14]

theirmotion being of fuch a Velocity impreffed fiom the Anbient on the two extreme Particles I Iand ${ }^{\prime} 8$. Finf, if by any external power on the two extremes vand '8, they be removed further afinider, as to $\mathrm{CD}_{\text {, }}$ then thall all the Vibrative Particles 'be proportionably extended, and the number of V ibrations, and confequendy of occurfions be reciprocally diminifhed, and confequently their endeavour of receding from each other be reciprocally diminithed alfo. For fuppofing this fecond Dimenfion of Length be to the firt as. 3 to 2, the length of the Vibrations, and confequently of occurfions, be reciprocally diminifhed. For whereas I fuppofed 1000000 in a fecond of the former, here can be but 666666 in this, and confequently the Spring inward muft be in proportion to the Extenfion beyond its natural length.

Secondly, if by any external force the extreme particles be removed a a third part nearer together than (the external nataral force being alway the fame both in this and the former inftance, which is the ballance to it in its natural ftate) the length of the Vibrations fhall be proportionably diminithed, and the number of them, and confequently of the occurfions be reciprocally augmented, and inftead of 1000000 , there fhall be 1500000 .

[15]

Having thus explained the moft fimple way of fpringing in folidbodies, it will be very eafie to explain the compound way of fpringing, that is, by flexure, fuppofing only two of thefe lines joyned

together as at G HIK, which being by any external: power bended into the form. L NNO, LM will be extended, and NO will be diminifhed in proportion to the flexure, and confequently the fame proportions and Rules for its endeavour of reftoring it felf will hold.

In the next place for fluid bodies, amongt which the greateft inftance we have is air, though the fame be in fome proportion in all other fluid bodies.

The Air then is a body confifting of particles fo . fmall as to be almoft equal to the particles of the Heterogeneous fluid medium incompaffing the earth. . It is bounded but on one fide, namely, towards the earth, and is indefinitely extended upward being only hindred from flying away that way by its own gravity, (the caufe of which I thall fome other time explain.) It confifts of the fame particles fingle and feparated, of which water and other fluids do, conjoyned and compounded, and being made of particles exceeding

Exceeding fmall, its motion (to make its ballance with the reft of the earthy bodies) is exceeding fwift, and its VibrativeSpaces exceeding large, comparative to the Vibrative Spaces of other terreftrial bodies. I fuppofe that of the Air next the Earth in its natural flate may be 8000 times greater than that of Steel, and above a thoufand times greater than that of common water, and proportionably I fuppofe that its motion muft be eight thourand times fwifter than the former, and above a thoufand times fwifter than the later. If therefore a quantity of this body be inclofed by a folid body, and that be fo contrived as to comprefs it into lefs room, the motion thereof (fuppofing the heat the fame) will continue the fame, and confequently the Vibrations and Oecurfions will be increafed in reciprocal proportion, that is, if it be Condenfed into half the fpace the Vibrations and Occurfions will be double in number : If into a quarter the Vibrations and Occurfions will be quadruple, σc.

Again, If the conteining Veffel be fo contrived as to leave it more face, the length of the Vibrations will be proportionably inlarged, and the number of Vibrations and Occurfions will be reciprocally diminifhed, that is, if it be fuffered to extend to twice its former dimenfions, its Vibrations will be twice as long, and the number of its Vibrations and Occurfions will be fewer by half, and confequently its indeavoursioutward, will be alfo weaker by half.
Thefe Explanations will ferve mutatis mutands for explaining the Spring of any other Body whatoever.
It now remains, that I hew how the conftitutions of springy bodies being fuch, the Vibrations of a Spring, or a Body moyed by a Spring, equally and ubiformly fhall be of equal duration whether they be greaterior lefs.

[17]

I have here already fhewed then that the power of all Springs is proportionate to the degree of flexure, viz. one degree of flexure, or one fpace bended hath one power, two hath two, and three hath three, and fo forward. And every point of the face of flexure hath a peculiar power, and confequently there being infinite points of the fpace, there muft be infinite degrees of power.

And confequently all thofe powers beginning from nought, and ending at the laft degree of tenfion or bending, added together into one fum, or aggregate, will be in duplicate proportion to the fpace bended or degree of flexure; that is, the aggregate of the powers of the Spring tended from its quiefcent pofture by all the intermediate points to one fpace (be it what length you pleafe) is equal, or in the fame proportion to the fquare of one (fuppofing the faid fpace infinitely divifible into the fractions of one;) to two, is equal, or in the fame proportion to the fquare of two, that is four; to three is equal or in the fame proportion to the fquare of three, that is nine, and fo forward; and confequently the aggregate of the firt fpace will be one, of the fecond fpace will be three, of the third rpace will be five, of the fourth will be feven, and fo onwards in an Arithmetical proportion, being the degrees or exceffes by which thefe aggregates exceed one another.

The Spring therefore in returning from any degree of flexure, to which it hath been bent by any power receiveth at every point of the face returned an impulfe equal to the power of the Spring in that point of Tenfion, and in returning the whole it receiveth the whole aggregate of all the forces belonging to the greateft degree of that Tenfion from which it returned; fo a Spring bent two faces in its return receiveth four degrees of impulfe, that is, three in the firft fpace returning, and one in the fecond; fo bent three faces it receiveth in its whole return nine

[18]

degrees of impulfe, that is, five in the firft fpace returned, three in the fecond, and one in the third.

So bent ten fpaces it receives in its whole return one hundred degrees of impulfe, to wit, nineteen in the firft, feventeen in the fecond, fifteen in the third, thirteen in the fourth, eleven in the fifth, ninde in the fixth, feven in the feventh, five in the eighth, three in the nintij, and one in the tenth.

Now the comparative Velocities of any bodymoved are in fubduplicate proportion to the aggregates or fums of the powe'rs by which it is moved, therefore the Velocities of the whole fpaces returned are always in the fame proportions with thofe fpaces, they being both fubduplicate to the powers, and confequently all the times fhall be equal.

Next for the Velocities of the parts of the fpace returned they will be always proportionate to the roots of the aggregates of the powers impreffed in every of thele fpaces; for in the laft inftance, where the Spring is fuppofed bent ten fpaces, the Velocity at the end of the firt fpace returned fhall be as the root of 19 . at the end of the fecond as the Root of 36. that is, of $19+17$. at the end of the third as the Root of 51 . that is of $19+17$ +15 . At the end of the fourth as the Root of 64 . that is of $19+17+15+13$. at the end of the tenth, or whole as the Root of 100 . that is as $15+17+15+13+11+9+7+5+3$ +1 , equal to 100 .

Now fince the Velocity is in the fame proportion to the root of the fpace, as the root of the fpace is to the time, it is eafie to determine the particular time in which every one of thefe fpaces are paffed for dividing the fpaces by the Velocities correfponding the quotients give the particulartimes.

Toexplain this more intelligibly,let A in the fourth figure reprefent the end of a Spring not bent, or at leaft coun-
counterpoifed in that pofture by a power fixt to it, and movable with it,draw the line A B C, and let it reprefent the way in which the end of the Spring by additional powers is to be moved, draw to the end of it Cat right Angles the Line $\mathbf{C} \delta \mathrm{D} d$, and let $\mathbf{C} D$ reprefent the power that is fufficient to bend or move the end of the Spring A to C,then draw-the Line D A, and from any point of the Line A C as B B.Draw Lines parallel to CD, cutting the Line DA in E, E, the Lines $B E, B E$, will reprefent the refpective powers requifite to bend the end of the Spring A to B, which Lines BE,BE,C D will be in the fame proportion with the length of the bent of the Spring A B, A B, A C.

And becaufe the Spring hath in every point of the Line of bending A C , a particular power, therefore imagining infinite Lines drawn from every point of AC parallel to CD till they touch the Line AD, they will all of them fill and compofe the Triangle A CD. The Triangle therefore $A C D$ will reprefent the aggregate of the powers of the Spring bent from Ato C, and the leffer Triangles A BE, A BE will reprefent the aggregate of allt the powers of the Spring bent from A to B, B, and the Spring bent to any point of the Line A C, and let go from thence will exert in its return to A all thofe powers which are equal to the refpective ordinates BE, BE, in the Triangles, the fum of all which make up the Triangles ABE, ABE. And the aggregate of the powers with which it returns from any point, as from \mathbf{C} to any point of the fpace CA as to BB, is equal to the Trapezium CDEB, CDEB, or the exceffes of the greater Triangles above the lefs.

Having therefore fhewn an Image to reprefent the flexure and the powers, fo as plainly to folve and anfwer all Queftions and Problems concerning them, in thenext place I come to reprefent the Velocities appropriated to the feveral powers. The Velocities then being always in a fubduplicate proportion of

[20]

the powers, that is, as the Root of the powers impreffed, and the powers impreft being as the Trapezium or the excefs of the Triangle or fquare of the whole fpace to be paft above the fquare of the fpace yet unpaffed; if upon the Center A, and fpace AC, (C being the point from which the Spring is fuppofed let go) a Circle be defcribed as C G G F, and ordinates drawn from any point of C A the fpace to be paft, as from B, B, to the faid Circle, as B G , B G , thefe Lines B G;B G, will reprefent the Velocity of the Spring returning from C to B, B, ofc. the faid ordinates being always in the fame proportion with the Roots of the Trapeziums CDEB, CDEB for putting AC= to a, and $A B=b, B G$ will always be equal to $V a, a-b b$, the fquare of the ordinate being always equal to the Rectangle of the intercepted parts of the Diameter.

Having thus found the Velocities, to wit, B G, B G, $A F$, to find the times correfponding, on the Diameter A C draw a Parabola C HF whofe Vertex is C,and which paffeth through the point F. The Ordinates of this Parabola B H, B H_{5} AF, are in the fame proportion with the Roots of the fpaces C B, C B, C A, then making G B to HB as HB to IB, and through the points CIIF drawing the curve CIIIF, the refpective ordinates of this curve flhall reprefent the proportionate time that the Spring fpenids in returning the fpaces C B, C B, C A.

If the powers or ftiffnels of the Spring be greater than what I before fuppofed, and therefore mult be expreffed by the Triangle \mathbf{C} de A. then the Velocities will be the Ordinates in an Ellipfe as $\mathrm{C}_{\nu} \nu \mathrm{N}$, greater than the Circle, as it will alfo if the power be the fame, anid the bulk moved by the Spring bellef. Then will the S-like Line of times, meet with the Line A F at a point as X within the point F.But if the powers of the Spring be weaker than Ifuppofed, then will C se e A reprefent the powers, and $\mathrm{C}_{2} 2 \mathrm{O}$ the Ellipfis of

Velocity,

Velocity, whofe Ordinates $\mathrm{B}_{\boldsymbol{\gamma}}, \mathrm{B}_{\boldsymbol{\gamma}}, \mathrm{AO}$ will give the particular Velocities, and the S-like Line of time will extend beyond \mathbf{N}. The fame will happen fuppofing the body (moved by the Spring) to be proportionately heavy, and the powers of the Spring the fame with the firft.

And fuppofing the power of the Spring the fame as at firft, bended only to B_{2}, and from thence let go B_{2} EA is the Triangle of its powers, the Ordinates of the Circle Bg Lare the Lines of its Velocity, and the Ordinatesof the S-like Line BiF are the Lines of time.

Having thus fhewed you how the Velocity of a Spring may be computed, it will be eafie to calculate to what diftance it will be able to fhoot or throw any body that is moved by it. And this muft be done by comparing the Velocity of the afcent of a body thrown with the Velocity of the defcent of Gravity, allowance being alfo made for the Refiftance and impediment of the medium through which it paffes. For inftance, fuppofe a Bow or Spring fixed at 16 foot above a Horizontal floor, which is near the fpace that a heavy body from reft will defcend perpendicularly in a fecond of time. If a Spring deliver the body in the Horizontal line with a Velocity that moves it 16 foot in a fecond of time, then fall it fall at 16 foot from the perpendicular point on the floor over which it was delivered with fuch Velocity, and by its motion fhall defcribe in the Air or Cpace through which it paffes, a Parabola. If the Spring be bent to twice the former Tenfion, fo as to deliver the body with double the Velocity in a Horizontal Line, that is, with a Velocity that moves 32 foot in a fecond, then fhall the body touch the floor in a point very near at 32 foot from the aforefaid perpendicular point, and the Line of the motion of the body, fo fhot fhall be moved in a Parabola, or a Line very near it, I fay very near it, by reafon that the

D 3 Impediment

Impediment of the medium doth hinder the exactnefs of it. If it be delivered with treble, quadruple, quintuple, fextuple, orc. the firt Velocity it fhall touch the floor at almoft treble, quadruple, quintuple, fextuple, © σ c. the firft diftance. Ithall not need to fhew the reafon why it is moved in a Parabola, it having been fuffieiently demonftrated long fince by many others.

If the body be delivered by the Spring at the floor, but fhot by fome Angle upwards,knowing withwhat Velocity the fame is moved when delivered, and with what Inclination to the Perpendicular the fame is directed, and the true Velocity of a falling body, you may eafily know the length of the factus or'hot, and the time it will fend in paffing that length.

This is found by comparing the time of its afcent with the time of the defcent of heavy bodies. The afcent of any body is eafily known by comparing its Velocity with the Angle of Inclination.

Let $a b$ then in the fifth Figure reprefent 16 foot, or the fpace defcended by a treavy body in a fecond minute of time. If a body be fhot from b, in the Line $b f$ with a Velocity as much fwifter than that equal motion of 16 foot in a fecond, as this Line $b f$ is longer than $a b$ the body fhall fall at e; for in the fame fpace ${ }^{\wedge}$ of time that the oblique equal motion would make it afcend from $b d$ to $a c$, will the accelerated direct motion downward move it from ac to $b d$, and therefore at the end of the face of one fecond, when the motions do equal and balance each other, the body muft be in the fame Horizontal Line in which it was at firf, but removed afunder by the face $b e_{,}$, and for the points it paffeth through in all the intermediate fpaces this method will determine it.

Let the Parallelogram $a b p q$ then reprefent the whole Velocity of the afcent of a body by an equal motion of 16 foot in a fecond, and the Triangle $p q r$ reprefent the whole Velocity
of the accelerated defeending motion, $p b$ is then the Velocity with which the body is fhot, and p is the point of reft where the power of Gravity begins to work on the body and make it defcend. Now drawing Lines parallel to $a q r$, as $s t u$, $s t$ gives the Velocity of the point t afcending, and $t u$ the Velocity of the fame point t defcending.

Again, pbst fignifies the face afcended, and $p t u$ the face defcended, fo that fubtracting the defcent from the afcent you have the height above the Line $b d$, the confideration of this, and the equal progrefs forwards will give the intermediate Velocities, and determine the points of the Parabola:

Now having the factus given by this Scheme or Scale, appropriated to the particular Velocity, wherewith any body is moved in this or that line of Inclination, it will be cáfie to find what Velocity in any Inclination will throw it to any length; for in any Inclination as the fquare of the Velocity thusfound in this Scale for any inclination is to the fquare of any other Velocity, fo is the diftance found by this Scale to the diftance anfwering to the fecond Velocity.

I have not now time to inlarge upon this feculation, which would afford matter enough to fill a Volume, by which all the difficulties about impreffed and received motions, and the Velocities and effects refulting would be eafily refolved.

Nor have I now time to mention the great number of ufes that are and may be made of Springs in Mechanick contrivances, but fhall only add, that of all fpringy bodies there is none comparable to the Air for the valtnefs of its power of extention and contraction. Upon this Principle I remember to have feen long fince in Wadbam Colledge, in the Garden of the learned Dr.Wilkins, late Bifhop of Cbefter, a Fountain fo contrived as by the Spring of the included Air to throw up to a great height a large and lafting fream
fream of water: Which water was firt forced into the Leaden Ciftern thereof by two force Pumps which did alternately work, and fo condenfe the Air included into a fmall Room. The contrivance of which Engine was not unknown to the Ancients, as Hero in his Spiritalia does fufficiently manifeft, nor were they wanting in applying it to very good ufes, namely, for Engines for quenching fire: As Vitruvius (by the help of the Ingenious Monfieur Clande Perraults interpretation) hath acquainted us in the Twelfth Chapter of his Tenth Book, where he endeavours to defcribe Ctefibius his Engine for quenching fire. Not long fince a German here in England hath added a further improvement thereof by conveying the conftant ftream of water through Pipes made of well tanned and liquored Leather, joyned together to any convenient length by the help of brazen Screws. By which the ftream of water may be conveyed to any convenient place through narrow and otherwife inacceffible paffages.

The ingenious Dr. Denys Pappin hath added a further improvement that may be made to this Ctefibian Engine by a new and excellent contrivance of his own for making of the forcing Syringe or Pump, which at my defire he is pleafed to communicate to the Publique by this following Defcription, which he fent me fome time fince.

Dr. Pappins Letter containing a

 Defcription of a Wind-Fountain, and bis own particular contrivance about the forcer of its Syringe.SInce the Artificial Fountain you have feen at Mr. Boyles (which was of my making upon his defire) hath been fo pleafing to you as to make you defire to fee my defcription thereof, I cannot doubt but the fame will be as grateful alfo, and well received by the Publick, efpecially when they fhall therein find a remedy for one of the greateft inconveniences of forcing Pumps, which are of to great ufe for raifing of water, and quenching of fires. This was the occafion of my fending you this prefent defcription, which would not have been thus prolix had it been only for your felf.

In the Figure then A A is the Receptacle or body of the Fountain careful fodered in all places, B B is the Pump, CC the Plug or forcer, D a Pipe in the middle of the Plug, which is perfectly fhut and ftopped when the Plate E E is forced down upon it, E E is the Plate with a hole in the middle, upon which is fodered a Pipe F, which ferves for a handle to move the Plug up and down.

G is a Cock at the top of the Pipe, which ferves to moderate the Jetto or fream.

H H is a Valve at the bottom of the Pump, which openeth outward for the paffage of the water out of the Pump into the Fountain or Receptacle.

II is a Crofs at the top of the Plug to hinder the Plate EE from being drawn or feparated too far
from the hole D in working it to and fro.
K K are two Pins ferving both to force down and keep open the Valve H H.

LL are two Appendices fodered unto the top of the Pipe F F, ferving both for a handle to the Rod of the forcer, and alfo to keep down the forcer.

M M are two other appendices or buttons faftned at the top of the two fmall pillars NN, fo as to turn upon the fame, and ferve to hafp or button down the ends LL of the handle of the forcer that it be not drivenup again.

OO is the Bafin for receiving the water that falls from the Jet or ftream from which it may beforced againinto the Fountain or Receptacle.
For charging this Machine the Bafin O O muft firft be filled with water, and then the Pump muft be worked to and fro. In doing of which, when the Plug is drawn upwards the water in the Bafin runs in through the crofs (through which the Rod F F paf(es,) where finding the hole Dopen it fills the 'paces of the bottom of the Pump; then the Pump being thus filled the Plug is to be forced downwards, whereby the Plate EE being clofely applied to the brims of the hole D hinders the water from returning back again through the fame, but is forced through the valve H H into the Fountain A A. And by repeating this operation all the water of the Bafin 00 is eafily forced into the aforefaid Fountain, whereby all the Air that wastherein contained iscompreffed more or lefs according as more or .lefs water is forced in, and kept in that compreffion by the valve H H, which hinders the water that it cannot return through the fame.

But when you defire to have it return, you force down the Plug hard againft the bottom or plate, which by the help of the aforefaid Pins or Appendices K K force, and keep open the valve $H H_{\text {, }}$, and theRod F beingkept faft down in this pofture by the aforefaid

[27]

aforefaid Buttons or Hafps MM, upon opening the Cock G the water returneth through the valve HH , fokept open, through the hole D, and through the whole length of the Pipe F.

This way of putting a valve into the Plug of forcing Pumps will be of great ufe for all fuch as ferve for fupplying Towns with water, and for quenching of fire, as preventing a great inconvenience to which the common Pumps are ufually fubject from the Air which is apt to be generated within them, which Air upon working the faid Pump remaining below the forcer, and by its Expanfion when the Plug is drawn upwards, hindring the water from filling the whole Cavity beneath it, and by its Condenfation when the Plug is forced downwards, lofing a great part of the ftrength of the force, much of the effect of the faid Machine is frultrated.

For preventing of which Inconvenience care is to be taken that the water in all thefe forcing Pumps be admitted by the top thereof as in the prefent Machine, whereby whatever Air fhall be generated below the Plug, will readily rife into the hole D as being the higheft place next the Plate E E, from whence when by the drawing up of the Plug the Plate is lifted from the brims of the hole D the Air will readily flip up, and the water as readily defcend and fill all the parts of the Pump below the Plug. As I have often experimented in this prefent Machine.

Some Perfons may object againft thefe kind of valves, asfuppofing the preffure of the water to be on the wrong fide thereof. But it is eafie to be noted that this objection is groundlefs, fince it is the fame thing whether the Plate be preffed againft the Rim of the valve, or the Rim of the valve againft the plate. In common valves the Preffure of the water forceth the Plate againft the Rim: But in this the Rim againft the Plate ; for the remaining folid Rim of the valve, being made thrice as big as the hole or Cavity thereof,
the preffure of the water againft that Rim forceth the faid Rim againft the Plate in the middle three times harder than if the preffure of the water lay only on the plate of the value, the fame would be preffed againft the Rim.

To this Difcourfe of an Artificial Fountain I thought it not improper to add an ingenious. Difcourfe of M. Fames Young of Plimouth conteining his own Obfervations and Opinion concerning natural Fountains and Springs.

SIR,

HAving now gained time, from my other avocations, I have drawn up thofe obfervations: I told you I had made in my travels, which had confirmed in me the opinion of my Lord Bacon, that Fountains and Springs were the Percolation of the Sea ; not (as your felf, Mr. Ray; Orc. do affert.) from the rains defcent into the Earth, I now reprefent them to your confideration, rather as an Apology (becaufe they feem rational) to excufe, than Arguments to juftifie and avow the prefumption of my diffent.

The firt fhall be the Phænomena, I obferved at Ifle de Mayo, which lieth in the Torrid Zone, about thirteen degrees and 30 minutes, North from the Equator. It's about fix Leagues long, and four broad, the wind bloweth conftantly North Eaft, or thereabout, and without rain, except three weeks in July, when it hath many fhowers; I here fend you a Map of the Illand, as exactly as I could draw it. I was there two Voyages, and each remained a full month, the beft part of which If pent in hunting, and ranging the Ifland; there runneth through the middle of it a Rivulet, of very pure water; It takes its rife from

[29]

from the bottom of two Hills, which lie on the North Eaft end; The ftream at the place marked D, is about fourteen foot wide and two deep; other than which there is no frefh water on the whole IIland, except what our people dig out of the fand between the Ocean and the falt Pond.

The faid Pond is in a large Bay, at the Weft fide of the Ifland, which hath from one point to another a bank of Sand, about two or three foot above water, covering the Bay like a ftring to a Bow, the faid bank in the Flemifh Road is about 150 foot wide, at the Englifh Road it is as broad again; there is never any fenfible ebbing or flowing of the Sea, only at full Móons, or a day before. It rifeth in high Billows, which break over the Bank, at the North end of the Pond, where it ís loweft : By which means the Pond is replenifhed with water, which condenfeth into Salt in two days.

The Sand dividing the faid Pond and the Sea is very fine and loofe. Now becaufe the before-mentioned Rivulet difembogues far from the Roads at an inconvenient place for Boats, they are conftrained to dig Wells, in the midft of the bank of Sand, between therPickle of the falt Pond and the Sea, the manner thus: They firft dig a pit about eight foot deep, and therein lay two Hogheads, the one on the top of the other, the head out of both fave the lowermoft of the deepeft; the fides of both are alfo full of Gimlet holes, and the fand laid clofe to them: After twenty four hours they have three or four foot of very clean water in them, which being dipped out, you plainly fee the new water ftraingently through thofe holes in the fides of the Cask : After which, in a days time, one man attending it, may draw about ten Hogheads or more of water, a little talting of Salt, not fo much but that it is drinkable, and very fit to boyl meat in, and is ufed by thofe that come there to load Cattle, for their
common drink, I have in the Map placed the Sign O where our Well was made.

The néxt oblervations, pertinent to this fubject I made at the Illand Lipari, near Sicily, about fixteen Leagues from Me/fina; it is famous for the beft Raifins in the Mediterranean; there is on it a large Caftle, a fmall Town, many Vineyards, and about one hundred Families, befides fome Religiofe I judge it wants a fifth part of the bignefs of the Ifle de Mayo, it is moftly very high Land, efpecially one Mountain, on which ftands a Watch Tower, whence a man may fee a monftrous diftanceatSea, as is confirmed by de Ruyter. In the relation he gives the States of Holland, wherein he tells them, that from that place they difcerned the French Fleet's approach long before they could from any other part, either of their own or the other Illand. I am fure it is much higher than either that at the Ille de Mayo, or any I have feen in England, and yet on this fair fruitfal Illand fprings notone drop of water, the Inhabitants ftoring themfelves with rain, which falling very frequently, they are careful to preferve in Cifterns, divers effays have been made in the moft promifing part of it to find Springs by digging Wells, one of thofe which I faw was without doubt the deepeft in Europe, I remember not the exact profundity as they related it, but I have not forgot, that throwing in a frone it was long ere it got to the bottom, and then returned fuch a noire as it had been the difcharge of a Mufquet.

The caufe of this drinefs was by the people thought to be fubterranean heats, abfuming the water, but no fuch thing appearing, to the fenfe of thofe that digged the Wells, I gave no faith to that perfuafion; they fancy fuch heats partly from the want of water, but moftly becaufe the four adjacent Illands, Stromboli, Vulcano, Vulcanella, and M. Atna, are conftantly burning, and very near them.

[31]

The obvious earth of this place is loofe, and in all apparent qualities very good, but by the heaps that had been thrown up, in digging the Wells, I faw the inferiour earth was clammy, or like clay, that had fome greafie gummous matter commixed, This the Religious told me was the very kind of Sulphur whichconftantly boyled out of the burning Cranny on Vulcanella; and wherewith all thofe Iflands abounded, not excepting their own, though it were not yet kindled.

For my third obfervation, I will go no farther than the place of my prefent abode, Plimmouth, in which on a kind of Piazza, commonly called the New-key, (a plat of ground got in from the Sea) is a Well, which (before the ever famous Sir Francis Drake by cutting a Rivulet of thirty miles procured us water in great plenty) was of common ufe, having (as at this day) a Pump in it; about feven years fince (being before the Key was inlarged) the Well was not above eight foot from the edge thereof, over which the Sea would frequently flow, when a high outwind and a Spring Tide concurred, I fay this Well, though fo near the Sea, yieldeth clean water, and as fweet as a mixture of three parts frefh and one of falt water would be. About an hundred yards from that, onground a little rifing, is a very large Well, which fupplieth three or four Brew-houfes, by whofe drink it is evident that the water hath not wholly quitted its falt. It is to be noted, that Plimmouth lieth on a Peninfula three miles long, and two broad, the Ifth-, mus about two thirds of a mile wide, and not very high from the furface of a full Sea. There are many Wells in it, thofe near the Sea are faltifh, thofe farther from it the lefs fo.
My fourth obfervation I take from the late famous French Travelter Monfieur Taverner, who in his firft Volume, difcourfing of the Coaft of Coromandel, \&c. he faith they there want frefh water, and are conftrained
frained to make pits of two foot deep in the fand by the Sea to find it.

The fifth obfervation, and which I would call the moft fignificant, were I affured of its truth, I had from a very ingenious Chirurgeon, who had ufed the Weft Indias, that there is in that Sea an Ifland called Rotunda, of a figure agreeable to its name, which, though very fmall, hath on it, arifing in the middle, a Spring of a very large ftream of water, at which our Ships frequently furnifh themfelves in their Navigation, he affirmed that it raineth there but once a year, as at the Ille de Mayo; faying withal, that the Illand is fo thort of a proportion big enough for the ftream, that if it conftantly rained, it could not be fupply enough to maintain folarge an Efflux.

My fixth and laft, is the relation of Dr. Dowones concerning Barbadoes, viz. that all their Springs were formerly very near the Sea; that up in the Country they fupplied themfelves from the rains by digging pits in the earth, able to contain great quantities, and there preferving it; which they did a very long time (the rains being there as unfrequent as at the lle de Mayo) and that without any fenfible diminution by penetrating and defcending into the earth; and to prevent the lofs thereof by the exhalations of the Sun they covered it with leaves, ©̛c. but that now by digging deeper they find Springs to plenty that no Plantation is without one.

From all thefe obfervations the following confectaries do mechanically refult.

From the firft it appeareth that fome Springs have manifeftly their fource from the Sea; that fand fweetens tranfolated Sea-water, and that even pickle ftrainedthrough itlofeth much of its faltnels thereby, all which is evident from the Well therein mentioned, whofe water could not poffibly be other than what foaked in from the Pond and the Ocean.

Hence alfo is manifeft, that conftant and large Fluxes of water may be made for eleventh months without rain to refill the fubterranean Cifterns, fuppofed by you to fupply them; this appears from the River running through the Illand, by whofe banks I found (it being April when I was there, at which time they had been ten months without rain) thifh after their fhowers it could run but little larger that it did after fotedious a want of them. I had forgot to intimate in the relation, that thofe two Hommets, A. are craggy Rocks, whereon live a great number of Goats, and are confequently very unfit, if not incapable, either to receive, or contain the Magazine for the fupply of the Rivulet.

From the fecond it is manifeft, that higher Mountains of earth, and coneequently more likely to receive and contain fufficient quantity of rain-water to beget and fupply Springs and Rivers have not always that effect, although there was one great advantage more added here, viz, a clammy tyte earth in the bottom to make the fuppofed Ciftern the better able to contain the fore. I fay, that frequent rain to fill, high Mountains to contain, loofe pervious earth to receive, and a well luted bottom to fupport and retain (being all the qualifications and circumftances fuppofed necefliary to make and continue Springs according to the modern Hypothefis, though all here conctirred, did notwithftanding fail of producing that effect.

From the fameit is alfo manifeft, that where Springs fail, without want of the caufes that Hypothefis fuppofeth neceffary to produce them, the occafion hath been from an apparent defect in theother (that is the impervioufnefs of the earth through which the water muft pafs beforea Spring can be produced) both thefe appeared at Lipary, where the general effect a Spring or fountain was wanting, together with the caufes of our Hypothefis, though thefe of the other were F manifeftly
manifeftly exiftent, and with all the advantages neceffary : It feeming to me a very rational conjecture, that the greafie clammy Sulphur, wherewith that earth was impregnated, did by oppilating it hinder the infinuation of the Sea into it.

From the third obfervation you have the firt deduction confirmed, viz. That Springs are fometimes manifeftly from the Sea; That earth fweetens Sea-water by Percolation; And that the nearer Springs are to the Sea, the more they retain of their priftine faltnefs, and lofe it by fenfible degrees, as they infinuate farther through it.

By the fourth the fame is confirmed.
The fifth proveth, that large ftreams flow without any poffibility of being fupplied by rain, both for want of fuch rain, and of dimenfions to receive and contain it.

The fixth doth evidence, that rain doth not penetrate the Surface of the earth, even in a very dry parched Country, and in the Torrid Zone, and yet that Springs are under it, which at once proves ours, and refutes the other opinion; the former appears by the water in thofe made Ponds, lying there for a long time without any fenfible lofs thereof by its leaking into the earth: The later by the Wells near the Sea, and thofe found fince under that impervious Land.

He that is not altogether a ftranger to the weight, preffure, and Elafticity of the air, the afcenfion of liquors through Filters, and fome other refembling Phænomena, would not account the like motion of the tranfcolated water to high hills, to be an objection of any force againft this Hypothefis, but fure fuch folutions are no lefs beyond my ability than defign.

Finding I have Paper enough left, I will prefume to trouble you with one rare appearance more, that occurred to one Mr. Brafey of this Town, an aged
and very fat man, who by taking Spirit of Yitriol in his mornings draughts (to which he was advifed as a remedy to affwage the exuberance of his belly) found that it had no effect on his body; but that a bundle of Keys, which he ufed to carry always about him, and that wonted to be very fmooth and bright, of a fudden became black and rufty, though he never handled the Spirit, nor carried it in his pocket, fo that we concurred in opinion that the fudorous Effluvia of his body, impregnated with the Acid Spirit, had occafioned it.

If fo, It's very wonderful, that fo fmall a quantity thereof, when diluted with fo much juice as is contained in fuch a corpulent man, fhould even infteam and the infenfible Emanations make impreffions on fmooth Iron, mauger the perpetual attrition, by carrying them in his Pocket, whereby fuch an effect (one would think) fhould be prevented, or foon rubbed of.- I was going to make fome reflections on this notable accident, but I confider, ®rcc. $^{\text {. }}$

Plimmouth
May 5.1678.

Fames Young.

THE Original of Springs is that which hath exercifed the Pens of many learned Writers, and very various have been the conjectures concernning it. But amongft all I have met with I conceive none more probable than that which feems to fetch its original from the Hiftory of the Creation mentioned in Holy Writ; that is, that there is a Magazine of waters above as well as a Receptacle of waters upon or beneath the Surface of the Earth: And that the Air is that Firmament which feparates between the upper and lower waters, and between thefe two is the circulation of waters (or bloud of the Microcofm, if I may fo call it) performed. The water being fometimes by a particular conftitution of the Air affifted by heat, rarified and feparated into minuter parts, and fo reduced into the form of Air, and thereby being divided into Particles really fmaller than thofe of the air in compaffing, and agitated with agreater degree of motion, they take up more fpace, and fo become lighter than the Ambient, and are thereby elevated and protruded upwards till they come to their place of poife or Equilibrium in the Air: At other times by a differing conftitution of the Air and deficiency of heat they lofe their agitation, and many of them again coalefce, and fo having lefs motion they condenfe and revert into water, and fo, being heavier than the incompaffing Air, defcend down again to the Earth in Mifts, Rain, Snow, Hail, or the like.

That there is fuch a Circulation I think there is none doubts,but ftill it remains a difficulty (with thofe perfons that grant this) that all Rivers and Springs fhould have their original from the water that falls or condences out of the Air.

To perfuadefuch perfonsit may not poffibly be unfucceffful to mention:

Firft, That the great inundations or overflowing of Rivers manifeftly proceed either from the Rain that immediately falls, or from the melting of Snow or Ice that hath formerly fallen on the more eminent parts of Mountains ; to confirm which, Hiftories enough might be brought were it neceffary of Nilus, Niger,\&c.

Secondly, That it hath been obferved and computed that communibus annis ed locts; there falls water enough from the Sky in actual Rain,Snow, or Hail upon the Surface of England to fupply all the water that runs back into the Sea by the Rivers, and alfo all that may befuppofed to evaporate; nay, though the quantity of the firft be fuppofed twice as much as really it is. This I have been aflured by thofe that have both experimented and calculated it.

Thirdly, That there is not yet certainly (that I know or have heard of) any other way of making falt water frefh, but by Diftillation; which, had there been fuch an Art, it would in all probability have been made ufe of, and fo there is little probability that the Springs at the top of a high Hill fhould proceed from the Sea-water ftrained through the earth. But were therefuch a filtration known I hinted in my Attempt, publifhed anne 1660 about Filtration, how fomewhat of that kind might beexplained.

Fourthly, That this Operation is conftantly and moft certainly performed by Nature both in exhaling and drawing up frefh fteams and vapours from the Sea, and all moylt bodies, and in precipitating them down again in Rain, Snow, Hail, but of theother we have no certainty.

Fifthly, I have obferved in feveral places where a Tree hath ftood upon an high Hill, fingly and particularly at the brow of Box Hill near Darking in Sur$r y$, that the body of the Tree is continually wet, and at the root fome quantity of water, which is always foaking and gliding down from the Branches and body of the Tree, the leaves, fprigs, and branches of
the faid trees collecting and condenfing continually the moyft part of the Air, the fame being indeed a true cand fively reprefentation of a River. Nor has it been my oblervation alone, but the fame is mentioned by divers Authors: And it is affirmed by fome Authors, that there are fome Iflands in the Torrid Zone which have no other water/in them than what is condenfed out of the Air by the Trees at the tops of the Hills, and converted into drops of Rain.

Sixthly, That it is generally obferved, whereever there are high Hills there are generally many Springs round about the bottoms of them of very frelh and clear water, and often times fome which rife very near the tops of them, which feems to proceed from their great elevation above the other plain fuperficial parts of the earth, whereby the Air being dafhed and broken againft them, they help to condenfe the vapours that areelevated into the higher and cooler Regions of the Air, and fo ferve likeFiltres to draw down thofe vapours fo condenfed, and convey them into the Valleys beneath, And hence it is very ufual in Countries where there are high Hills to fee the tops of them often covered with clouds and mifts, when it is clear and dry weather beneath in the Valleys. And in the paffing through thofe clouds' on the top I have very often found in them very thick mifts and frall rain, whereas as foon as I have defcended from the higher into the lower parts of the Hills, none of that mift or rain hath fallen there, though I could ftill perceive the fame mifts to remain about the top. Gonfonant to this Obfervation was one related to me by an ingenious Gentleman Mr. G.T. who out of curiofity with other Gentlemen whilft he lived in the Illand of Teneriff, one of the Canaries made a journey to the top of that prodigious high Mountain, called the Pikc. The fubftance of which (to this purpofe) was, that the Caldera or hollow Cavity, at the very

- [39]

top thereof he obferved to be very flabby and moyft, and the earth to flip underneath his feet, being a very moyft foft Clay or Lome like mortar. And farther, that at a Cave, not far from the top, there was a great quantity of very frefh water, which was continually fupplied, though great quantities of Ice were continually fetch'd from thence, and carried down into the Ifland for cooling their Wines. Confonant to which Obfervation was that which was related to me by the Inquifitive Mr. Edmund Hally made in St. Helena whilft he ftayed there to obferve the places of the Stars of the Southern Hemifphere, in order to perfect the Cœleftial Globe. Having then placed himfelf upon one of the higheft Prominences of that fmall Ifland, which he found to be no lefs than 3000 foot Perpendicularly above the Surface of the Sea next adjoyning, fuppofing that might be the moft convenient place for his defigned obfervation; He quickly found his expectation much deceived as to that purpofe for which he chofe it; for being gotten fo high into the Air the motion of it was fo violent as much to difturb his Inftruments; but which was more, he found fuch abundance of mifts and moyfture that it unglued the Tubes, and covered his Glaffes prefently with a Dew ; and which was yet more, the foggs and mifts almoft continually hindred the fight of the Stars. But upon removing to a lower ftation in the Ifland he was freed from the former Inconveniences.

I could relate many Hiftories of this nature, whereby it feems very probable, that not only Hills, but Woods alfo, do very much contribute to the condenfing of the moyfture of the Air, and converting it into water, and thereby to fupply the Springs and Rivulets with frefh water: And I am confident, whofoever fhall confider his own obfervation of this nature, and compare them with this Theory, will find many arguments to confirm it. However, Nullius in verba,

[40]

verba, Let Truth only prevail, and Theories fignific no further than right reafoning from accurate Obfervations and Experiments doth confirm and agree with them.

Having thus delivered here fomewhat of my own thoughts concerning Springs and Rivers, finding among fome of my Papers a Relation, whereina very ftrange fubterraneous Ciftern is mentioned, I have here fubjoyned it as I received it from Mr.Thomas Alcock from Briftol who together with Sir Humphry Hooke was by whillt Captain Samuel Sturmy made this inquiry, and who by interrogatories made to him, penn'd this Relation for him as it follows verbatim.

I
N purfuance of His Majefties Commands to me at the prefenting of my Mariners Magazine, I have with much diligence, fome charge and peril endeavoured to difcover that great Concavity in the earth inGlocefferfbire, four miles from Kingrode, where His Majefties great Ships ride in the Severn. And I find by experience that what has been reported of that place is fabulous, whill I thus defcribe it.

Upon the fecond of Fuly 1669. I defcended by Ropes affixt at the top of an old Lead Oare Pit, four Fathoms almoft perpendicular, and from thence three Fathoms more obliquely, between two great Rocks, where I found the mouth of this Ppacious place, from which a Mine-man and my felf lowerd our felves by Ropes twenty five Fathoms perpendicular, into a very large place indeed, relembling to us the form of a Hore-fhoo; for we fuck lighted Candles all the way we went, to difcover what we could find remarkable; at length we came to a River or great Water, which I found to be twenty fathoms broad, and eight fathoms déep. The Mineman would have perfwaded me, that this River Ebbed and Flowed, for that fome ten fathoms above

[41]

the place we now were in we found the water had (fometime) been, but I proved the contrary by flaying there from three hours Floud to two hours Ebb, in which time we found no alteration of this River ; befides, it's waters were frefh, fweet, and cool, and the Surface of this water as it is now at eight fathom deep, lies lower than the bottom of any part of the Severn Sea near us, fo that it can have no community with it, and confequently neither flux nor reflux, but in Wintếr and Summer, as all Stagna's, Lakes, and Loughs (which I take this to be) has. As we were walking by this River thirty two fathoms under ground, we difcovered a great hollownefs in a Rock fome thirty foot above us, fo that I got a Ladder down to us, and the Mine-man went up the Ladder to that place, and walk'd into it about threefcore and ten paces, till he juft loft fight of me, and from thence chearfully call'd to me, and told me, he had found what he look'd for (a rich Mine;) but his joy was prefently changed into amazement, and he returned affrighted by the fight of an evil Spirit, which we cannot perfwade him but he faw, and for that reafon will gothither no more.

Hereare abundance of ftrange places, the flooring being a kind of a white ftone, Enameled with Lead Oare, and the Pendent Rocks were glazed with Salt-Peter which diftilledupon them from above, and time had petrified.

After fome hours ftay there, we afcended without much hurt, other than fcratching our felves in divers places by climing the fharp Rocks, but four days together after my return from thence I was troubled with an unufual and violent Headach, which I impute to my being in that Vault. This is a true account of that place fo much talk't of, defcribed by me

Samuel Sturmy.

[42]

Having given you a Relation of fomething very - low within the bowels of the Earth, I now fhall add,

An account of a Journey made to the bigbeft part of the earthby my Ingenious Friend Mr.G. T. as I collected it.out of the Memorials which be writ at the time of making it; The particenlars whereof were,

T?Hat Amguft the wentieth; $\mathbf{1 6 7 4}$, about Nine in the morning, in company with Dr. Sebaffitan de Frianques, Mr. Conijfopher Priancìs, Mr. Thohisis Produdfoot, together witha Guide, and two other men with horles to carry themfelves and neceffary provifion for the Journey, he fet out frem

They paffed up a Hill, which was very freep, till they came to the Pinal or Wood of Pines. This Wood lieth very high in the Ifland, andertendethit felf from oneend of the Illaind to the other, and is in many places of agreat Breadth, and is very frequently covered with a Bruma, fog, or mift, which is fo thick as to darken and hitder the appearance of the Sun through it, and fo moylt as' to make one wet $\frac{h}{}$ paffing through it.

Through this Wood they tode by a pretty fteep afcent near two Leagues, croffing it till they came to the firther or
ffite, where alighting they refted themfelves undera Pine, innd Dined. And the fog, which had accompanied them through the whole Wood, hiere left them, and the Sun appeared.

From hence they patted about one in the Afternoons and after an afcentof about half a mile of very bad fony way they came to a fandy way, which for about the length of a League was pretty plain; but then they began to afcend a fandy hill, which or half a League farther was pretey feep, which having paffed they arrived at the foot of the Pike.
Here they alighted, and then refted themfelves forfome time, then taking horfe again, they began
to afeend the Pike it felf, This part of it was fo fleep that the way up it is made by feveral turnings and swindings to and fro to eafe and alleviate the Reepmels of the afcent, which were otherwife unpalfable for horfes. All this part feems to be nothing elfe but burnt ftones and athes, which may have formerly tumbled down from the higher parts of the Pike:

At this place they alighted, and unloaded their horfes of the Provifion of Victual and water which they were forced to carry with them for their own accommodation, as alfo of the Provender for their horfes. And prefently fet themfelves to provide againft the inconveniences of the enfuing night by getting together in the firft place a good quantity of the wood of a fmall hrub, called Retamen, not much unlike our Englifh Broom, which grows there pretty plentifully, and when dry burns very well; then, having gotten wood enough, they endeavoured to fhelter themfelvesagainft the piercing cold wind by heaping up a wall of ftones on the windward fide, and making a good fire of the dry fhrubs they had coilected to warm themfelves.

But fo fuxious was the wind which came pouring down from each fide of the Mountain that it blew the frogak and athes into their eyes, and forced them (though much to their Regret by reafon of the extreme piercing coldne(s of the Air) to remove their fire farther off. And to keep themfelves as warm as they could by dying down upon the ground very clofe together. Thus they paffed the night together as well as they could, but with very little fleep, partly by reafon of the cold, and partly for the continual expectation they had of the moment when their Guide would call them to be mounting up the Pike, which is ufually about two or three hours before day, to the end that they may get up to the top before the rifing of the Sun. For at the rifing of the Sun the Air is the moft clear, and all the Iflands of
the Canaries round about may be then plainly difeovered. ${ }^{\text {a }}$

But at two a clock, when they fliould have been on their Journey, the wind continued to blow with fuch violence, that their Guide would by no meanis venter to go up for fear leaft in the climbing up fome fteep places the wind fhould encounter any of them, and hurl them headlong down, fo that they were forced to continue and fhelter themfelves in their bad Lodgings till the Sun arofe, and had got fome maftery of the wind.

About fix a clock therefore they fet forwards on their enterprife, having firft taken each of them his difth of Chocolatte to fortifie their ftomachs the better againft the cold, fo with their Bottle of Strongwater in their Pockets, and Staves in their hands, they began to mount the Pike, the way being juft fuch as they had paffed the night before, but much more fteep, and continued on till they came to the Mal pays, or ftony way, which may be about halfa mile fiom the place where they lay; This ftony way lieth upon a very fteep afcent, and is compounded of abandance of ftones which lie hollow and loofe, fome of them of a vaft prodigious bignefs, and others of them fmaller, in fuch manner as if they had been thrown up there by fome Earthquake, as the Author conjectures with very great probability. In the clambring up thefeftones they took great care in placing their fteps on fuch of themas were more firm for fear of lipping or tumbling fo as to break their Legs or Arms.

With this difficulty they afcended till they came to the Cave which he conjectures to be about three quarters of a mile diftant from the beginning of the ftony way.

At this Cave they found feveral perfons who were come thither to get out Ice to carry down into the Ifland, fome of whieh were below in the Cave,
digging
digging Ice which was verys thick, others remained above They found the mouth of the Cave about three yardshigh, and two yardsibroad; and being all of them defirous to defcend intoit, by a Rope faltned about their bodies under their armpits they were all one after another let downinto it till they came to fet their feet uponthe Ice, which is: about fixteen or eighteen foot from the mouth.

The Cave is not very large, but full of water and Ice, which at the time when they were there lay about a foot under the Surface of the water, though the men that ufually go thither faid that at other times they found the Ice above the water, which makes many to fuppofe that it ebbs and flows by means of fome fecret entercourfe that it may have with the Sea, they averring that they have feen it emptying of itfelf.

But thisGentleman fa foon as ever he came down fixt his eye upon a ftone that lay juft above the Superficies of the water, and obferved very diligently but could not in all the fpace that he ftaid there, which was half an hour, find it either increafe or diminifh, which makes him believe that the fulnefs or emptinefs of the water may rather proceed from thofe thick fogs and milts which are generally on the top, and which hinder the Pike from being feen fometimes for twenty, thirty, nay, forty daystogether; except only juft at the rifing of fetting of the Sun, though at fome other times it happens alfothat the Air is clearer, and the Pike may be feen perhaps for a month together. From thefe mifts he conceives at fome times much water may be collected at the upper parts of the Pike, and foaking down may not only fupply, but increafe the water in the Cave; and confonant to this Hypothefis he obferved whilft he was there, that there was a continual gleeting and dropping of water in fix or feven places from the fides of the Cave, which droppings he fuppoles may be greater or lefs according as

$$
\text { G } 3 \text { thofe }
$$

[46]

thofeifogs dommore mrilefaricearpafs it, or flay about itadongat or Ahomertiney ife jpodges allo that there mayded lome dtherinilune freret ways bath for the Joormeyingothaterintocumd sete of ohe faid Caye than thofe droppings, that fitppofes them to proceed from the aforefid ifags, ofience the comeliudes when the Ainis dear, and nomeof thofe fogs condenfed albout the Hill, the water in she Cave muift neeeflavily deloreafe. Andithat mich confinmed him she mote in thisopinion swas that when he came to the very top of the Pike, he found the earth under him fo wery moyyt, thatit was like mind or morter, and might be made intorPafteras byodspeviment he found which he eonjectures dould no ways be cauled by the wind or clear Air, which is rrather drying and confuming of moifture, but mint proceed from the fogs or milts which areabove the very top of the Pike.
He furrtheritook notice in the Cave that upon the fides and top theneof thenegrow a if now-white furting like Saltpeter, which bad akind of faltifh tafte, fome of which he gathered and brought back with him to England to have it examined.
7. Afterabouthalf an houirsftay in the Cave, which they found watmer than without in the open Air, they were all pulled up ragain, rant proceeded forward in theis Journey by continuing to clamber up the ftony way, which lafted till they came to the foot of that part of the Mountain which is called the Sugar-loaf, by reafon that at/a diffincoffiom theifland rit lappears of that fhape, ras it dochaifor even when yousare atit. The diftance of this place from the Cave they judged to be about half a mile, but the way much more fteep and afceniligg than the former part of the flony -way, andextreme troablefomito pafs, theirifeet finking and Aipping downagain almoft as mueh as they could fride up wards, fo that they concluded it the mof: painful of all; however, perfifting in their endeavaus, aften thany times refting themelves, they gained
gained thetop, which they conceive might be about halfa mile higher?

The very top they found not plain, but very Rocky and uneven, and in the middle thereof a deep hole; the outfide of this top this Gentleman conceived might be about a quatter of a mile round about on the outfide.

This hole he conceived to be the mouth of a $V_{u l}$ cano which hath formerly been in that place, for even that time whilf they were there much frook afcended out of feveral holes and ehinks of the Rocks, and the earth in divers parts was ftill fo very hot as to be very offenfive to their feet through their fhooes, and heobferved Brimftone thrown up in feverall places, of which he colleoted fome, and brought back with him to England.

From this place may be feen in a clear day all the fix adjacent iflands, but the weather being then fomewhat thick and hazy, they could difcover none but the grand Canaries, Palm, and the Gomera; which lait, though diftant near eight Leagues from the bottom of the Pike feemed yet fo near unto them as if it had beenalmoft under them. The reft of the Illands they could difcover whereabout they lay by means of a kind of white cloud hanging on them, but they could not difcern the Iflands through thofe clouds.

Here they tried their Cordial Waters which they carried in their Pockets, but found them not to abate of their ufual ftrength, and become cold and infipid as fair water, as feveral had pofitively averred to him that they had found it, but he conceived them to be very much of the fame nature and ftrength that they were of before they were carried up, which he fuppofes to beby reafon of their arriving at the top fo late.

After they had ftayed on the top about an hour, and fatisfied themfelves in oblerving fuch things as they were able, they defcended again with very much facility,

[48]

Facility, and cameto the Stancia about eleven of the clock, where they dined, and thenceaboit one in the Afternoon fet forwards for the Villa, where they arrived thatafternoonabout five that Evening.
Afterthein retum they found their faces (by reafon of the cheat of the sun, and the parching fubtil wind) to caft their skins.

He did not meafute the Perpendicular height of the Hill himelf, hut fays that he hath been informed by divers skilful Seamen, (who by their beft obfervation have taken the height of it) that it is between three and four miles perpendicularly above the Sea:

1
N this Relation it is very remurkable:
Finft, that this prodigious high Hill is the Product of an Earthquake, and. feetns heretofore to have been a Frulteano, or butning Mountain, like thofe of Hitza, Vefuryius, Hecha, \&c. though at prefent it hath only Gire enough, left to fend forth fome few fulphireous fumes, and to make the earth of the Caldera or hollow pitht the very top shereof in fome places almoft hot enoughtio burn their fhopes that pats over it. And pofibly in fucceeding Ages even this little fire may be quite extinct, and then no other fign thereof may be left but a prodigioully high Rock or fpiring Mountain, which in tract of time may by degrees wafte and be diminifhed into a Hill of a more moderate height. $\%$ Now as this Hill feems very evidently to be the effect of an Earthquake, fo I am apt to believe that moft, if not all, other Hills of the world whatever may have been the fame way generated. Nay, not only all the Hills, but alfo the Land which appears above the face of the waters. And for this I could produce very many Hiftories and Arguments that would make it feem very probable, but that I referve them in the Lectures which I read of this fubject in Grefham Colledge in the years 1664, and 1665 , which when I can have time to perufe I may publifa. Therein

[49]

Therein I made it probable that moft flanids have been thrown up by fome fubterrameous Eruptions. Such is the fland of Afeenfon, the Moluccist, \&ce.

Secondly, that moft part of the Surface of the Earth hath been fince the Creation changed in its pofition and height in refpect. of the Sea, to wit, many parts which are now dry Land, and lie above the Sea, have been in former Ages covered with it; and that many parts, which are now covered with the Sea,were in former times dry Land. Mountains have been funk into Plains, and Plains have been raifed into Mountains.

Of thefe by obfervations I have given inflances, and fhewed that divers parts of England have in former times been covered with the Sea, there being found at this day in the moft Inland parts thereof fufficient evidences to prove it, to wit, Shells of divers forts of Fifhes, many of which yet remain of the animal fubftance, though others be found petrified and converted intoftone. Some of thefe are found raifed to the tops of the higheft Mountains, others funk into the bottoms of the deepeft Mines and Wells, nay, in the very bowels of the Mountains and Quarries of Stone. I have added alfo divers other inftances to prove the fame thing of other parts of Europe, and have manifefted, not only that the lower and plainer parts thereof have been under the Sea, but that even the highef Alpine and Pyrenean Mountains have run the fame fate. Many Inftances of the like nature I have alfo met with in Relations and obfervations made in the Eaft as well as in the Weft Indies,

Of all which ftrange occurrences I can conceive no caufe more probable than Earthquakes and fubterraneous Eruptions which Hiftories do fufficiently affure us have changed Sea into Land, and Land into Sea, Vales into Mountains fometimes, into Lakes and Abyffes at other times; and the contrary - unlefs we may be allowed to fuppofe that the water or fluid

[50]

part of the earth which covered the whole at firf, and afterward the greateft part thereof, might in many Ages and long procefs of time be, wafted, by being firft raifed into the Atmotphere in vapours, and thence by the diurnal, but principally by the annual motion thereof be loft into the ather, or medium through which it paffes, fomewhat like that wafting which I have obferved to be in Comets, and have noted it in my Cometa : Or unlefs we may be allowed to fuppofe that this fluid part is wafted by the petrifaction and fixation of fuchparts of it as have fallen on the Land and Hills, and never returned to fill up the meafure of the Sea, out of which it was exhaled, for which very much may be faid to make it probable that the water of the earth is this way daily diminithed.

Or unlefs (fince we areafcertained by oblervations that the direction of the Axis of the earth is changed, and grown nearer the Polar Star than formerly; that the Magnetifm or Magnetical Poles are varied, and do daily move from the places where they lately were, and that there are other great and noted changereffeced in the cearth) we may be allowed to conceive that the Cencral point of the attradive or gravitating power of the earth hathinigng procefs of time been changed and removed alfo farther from us towards our Altipodios, whence would follow a pecels of the waters firom thefe parts of the yorld to thofe, and an appearance of many parts above the furfaceof the water in the form of inlands, and of other places formerly above the Seanow in the form of Mountains, fo to continue till by the libration or orherways returning motion thereof it repoflefs its: former feat and place, and overwhelns again allthofe places which in the interim had been dey andunoovered with the return of the fame water, fincenothing in nature is, found exempt from the thate of change and cor- xuption.

Further, it is probable that Earthquakes may have been much more frequent in former Ages than they have beenin theie latter, the confideration of which will poffibly make this Affertion not fo Paradoxical as at firft hearing it may feem to be; though even thefe latter Ages havenot been wholly barren of Inflances of the being and effeds of them, to convince you of which I havehereunto fubjoyned a Relation and account of one very newly which hapned in the Ifle of Palma among the Canaries.

Next, the clearnefs of the Air is very remarkable, which made an Ifland which lay eight Leagues off to look as if it were clofe by. To this purpofe I have often taken notice of the great difference there is between the Air very near the lower Surface of the Earth, and that which is at a good diftance from it; That which is very near the earth being generally fo thick and opacous that bodies cannot at any confiderable diltance befeen diftinctly through it: But the farther the eye and object are elevated above this thick Air, the more clear do the objects appear. And I have divers times taken notice that the fame object feen from the top and bottom of a high Tower hath appeared twice as far off when feen at the bottom as when feen at the top: For the Eyedoth very much judge of the diftance of Objects according as the Denfity of the Air between the Eye and Object doth reprefent them. Hence I have feen men look of Gigantick bignefs in a fog, caufed by reafon that the Fog made the Eye judge the Objea much farther off than really it was, when at the fame time the vifible Angle altered not. This great thicknefs of the lower Air is fufficiently manifert in the Coeleftial bodies, few of the fixt Stars or fmaller Planets being vifible till they area confiderable way raifed above the Horizon.

The third remark about the moifnefs of the fogs, and the production of water at that height I have be-
forre infiftedioni Obly the almoft continual fogs that this Gentlemant obferved in the Wood they paffed is very remarkable for the origine of Springs.
Nor fhall I fay any thing concerning the vaft perpendicular height of the fame, but for a clofe of this prefent collection 1 fhall add the fhort account of the Eruption which lately hapried in the Palma.

4:true Relation of the Vulcanos which broke out ina the Ifland of the Palma Novemb.13, 1677.

Aturday the thirteenth of November 1677. aquarter of an hour after Sun-fet hapned a fhaking or Earthquake in the Ifland of St. Michael de Ia Palma, one of the Canary. Illands, from the lower Pyrenna; and withina League of the City unto the Port of Tafacorte, which isaccounted thirteen Leagues diftant along the Coaft, but more efpecially at or about a place called Fwencaliente, being feven Leagues from the Town tothe Southwards. The trembling of the earch was obferved to be more frequent and violent than elfewhere, and fo it continued till Wednefday the 17. ditto: The People thereabouts were much affrighted, for befides the Earthquake there was often hearda thundring noife as in the bowels of the earth on atPlaincalled the Canios, which isbefore you come to the great defcent towards the Sea, where the hot Baths ftand; or the holy Fountain; likewife at the afcent from the aforeflid Plain upwards at the great and weatifom Hill, called Cwefta Canfada, and until the Mountain of Goatyands, and the fame day in and about the faid places mentioned, the Earth began to open feveral mouths, the greateft of them upon the faid Qoat Mountain, being-diftantfrom the Sea a mile and an half, and from the faid opening came forth a very

[53]

great heat and fmell of Brimftone ; and the fame day; an hour before Sun-fet at one of the mouths of the wearifom Hill was a trembling thereabout with more violence than any of the four days before; and a great and black fmoak came forth with a terrible thundring noife, opening a very wide mouth, and throwing out much fire, with melted Rocks and ftones; and immediately after at another place eighty paces below hapned the like terrible noife and fight, and in lefs than a quarter of an hour after there opened to the quantity of eighteen mouths towards the foot of the faid Mountains, and there iffued out fire, melted Rocks, and other bituminous matter from all the faid mouths, and was prefently formed into a great River of fire, which took its courfe over the firft mentioned Plain, flowly going down towards the faid holy Fountain ; but it pleafed God, being come withineight faces of the Brink of the faid great defcent, it turned a little on the rightfide, and took its courfe with a very great fall towards the old Port, which is that which was firt entred by the Spaniards when they took the Iflands.

Friday the nineteenth at two a clock in the afternoon in the aforefaid Mountain of Goats, on the other fide of Taffacorte, there opened another mouth with much fmoak and ftones of fire, and fo clofed again. But the next day (the twientieth) it began again to fmoak, and continued with great trembling and noife in the bowels of the Earth until Sunday the twenty firft at noon, when with many flafhings of fire, and a greater thundring noife it finifhed that opening of that monftrous birth; cafting up. into the Air both fire and ftones, and at night the fmoak ceafing, the thundring noife, fire and ftones increafed, forcing great fiery fones fo high into the Air as we lof fight of them, and with fuch violence fent them upwards that according to the beft judgment they were five times longer in falling down;
H3 which
[54]
which ftonas or Rocke were oblerved to be bigger than aHogfhead; ; and what was moft to be admired was, that there breaking in the Air, and changing into many feveral Chapes, diftinctly appearing, yet notwithflanding did teunite again in alling down.

Manday the twenty fecond it began again to caft forth black finoak for two hours time, and after to thunder, and throw up fire and fonee with great violence. Trefday the twenty third at noon it fmoaked again, and from thence until night there was terrible thundring noife, and cafting up of fire and ftones more fierce than before; and about nine of the clock at nighta very great trembling of the earth was felt, and prefently after followed three great flones of fire in the form of Globes which were forced about half a League in height, and then like Granadoes broke in the Air with very great noife. Wedmefday the twenty fourth it was for an hours time very quiet, and after it began with greater force than ever before, by reafon that fonie of the lower and firft mouths were partly fopt, with which the aforefaid River of fire ceafed from running, after it had dammed up the Bay of the old Port, with burnt and melted Rocks and Stones, and other matter wherewith the faid River had run, and had forced the Sea backward above a Murquet fhot at random, and near twice as much in breadth. It ran into the Sea above fixty paces. What fell into the Sea went congealing with a great fnoak, what came after, forced and ran over that which went before, fo that the fmoak wals very great many paces within the Sea, as far as leven fathoms depth, which caufed many men to imagine that fome fuch like Vulcano had opened under the Sea in the faid feven fathomis depth. This night it caft up fome ftones like great fiery Globes as the former.
Tharrday the twenty fifth it proved yet more violent than ever with thundring noife and flafhes of fire.
fire. Friday the twenty fixth, the mouth that was at the foot of the Mountain began again to caft up as much fire and fones as ever, and formed two other Rivers; the one taking its courfe to Leeward of the firft River leading toward the Rocks called de los Tacofos; and the othertook its way to windward of the firft, directly towards the Bathes or Holy Fountain; and in this entrance the mouth of the Monntain was obferved to be more quiet, though it eaft up much afhes like black fmall fand. What dammage appears to have been done from its beginning to this day the twenty fixth of November, being of thirteen days continuance, hath been about nine or ten Country Houfes burnt, befides Out-houfes, and great Cifterns for water, which are the poor Peoples only Remedy inthofe parts, and upwards of three hundred Acres of ground are quite fpoiled, being covered with Rocks, Stones, and other Rubbifh and Sand; and if, (which God defend) the faid Vulcano do longer continue, the damage muft be far greater, efpecially if any other mouth hould break out higher, as it is much feared, by reafon the earth in fome places doth open with appearances as at firft, fo that all about that circuit of the Fuencalliente will be loft; and for what already hapned, and yet continues with much terrour, befides the fears of more in other parts thereabout, the Inhabitants do leave their Habitations, and like poor diftreffed people feek relief at the City, and many leave the Ifland to feek their fortunes in the others.

From the twenty fixth of November, that the aforefaid Relation was fent for Teneriff by the Chamber of this lland unto the General, the faid Vulcano continueth fierce, and without ceafing, rather more thanlefs, with a terrible thundring noife, cafting up Fire, Stones, Rocks, and black Ahes, and the three Rivers of Fire fill running into the Sea , and hath now dammed up all the Baths and boly Fountain, to the

[5]

the great detriment of the 1 lland, that yearly received a grear benefit therebys befides many damages daylyoaded to the formers Several other mouths heyg; Gipee opened in the tike dreadful manner near about the, fame place, werfe the great fmoak by day, and hear the thunder and noife, like the fhooting offor many Cannons, and byingt fee alo much of the fire very high in the Air from this City, which is one and twenty miles fromit.

We are now at the eleventh of Decembler, and fear twe fhall have more to write to youby the next.

Other Letters of the thirtieth of December miention, that it then contined muchat one as before $;$ and fince others of the nineteenth of Januiry ity, it is yet as dreadful as ever, and little likelitiood of ceaing ; from the thirteenth of November that it began to the nineteenth of Janmary is about ten Weeksthat it hath burnt; and the laft Letters mention abundance of Aftes orbleck Sand forced into the Air, and carried all over the Illand, falling thick like Rain, and frequently gathered in the City, in the Streets, Houfes, and Gardens, though feven Leagues off.

FINIS.

ERRATA:

[^0]
[^0]: PAge ro. Iine 15 , riad the other, viz, the vibrating $I \mathrm{I}$ of fricipates, Liy.\& 18. y. Vibiation there of but all Solids do exclude that menfrumm, or participate not of its motion. p i 4 lis 1 . for lengthr, nu ber. his. r. occations will be. p. 5 . L.6. \%. IMNO. I 12. . have of Elatifity
 gat fide. p 42. l.9. for Rrincis r. Francis.

